
UNIX - Command-Line Survival Guide
Files, directories, commands, text editors

Simon Prochnik & Lincoln Stein

Book Chapters
Learning Perl (6th ed.): Chap. 1
Unix & Perl to the Rescue (1st ed.): Chaps. 3 & 5

Lecture Notes
What is the Command Line?
Logging In
Amazon Web Services
The Desktop
The Shell
Home Sweet Home
Getting Around
Running Commands
Command Redirection
Pipes

What is the Command Line?
Underlying the pretty Mac OSX GUI is a powerful command-line operating system. The command line
gives you access to the internals of the OS, and is also a convenient way to write custom software
and scripts.

Many bioinformatics tools are written to run on the command line and have no graphical interface. In
many cases, a command line tool is more versatile than a graphical tool, because you can easily
combine command line tools into automated scripts that accomplish tasks without human intervention.

In this course, we will be writing Perl scripts that are completely command-line based.

Logging into Your Workstation
Your workstation is an iMac. To log into it, provide the following information:

Your username: the initial of your first name, followed by your full last name. For example,
if your username is srobb for sofia robb
Your password: pfb@forever

file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#why_unix
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#logging_in
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#aws
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#shell
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#using_shell
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#home
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#getting_around
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#commands
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#redirection
file:///Users/simonp/Documents/courses/Prog%20For%20Biol%202013/UNIX%20-%20Command-Line%20Survival%20Guide.html#pipes

Bringing up the Command Line
To bring up the command line, use the Finder to navigate to Applications->Utilities and double-click on
the Terminal application. This will bring up a window like the following:

OSX Terminal

You can open several Terminal windows at once. This is often helpful.

You will be using this application a lot, so I suggest that you drag the Terminal icon into the shortcuts
bar at the bottom of your screen.

Amazon Web Services cloud computing

The computers we will be using on the course are part of Amazon's cloud computing. Their system is
called Amazon Web Services (AWS).

Everyone will have access to their own computer. Amazon refers to them as instances.

Different computers or instance types have different amounts of memory and CPUs. Here are the two
types of instance we will be working on.

AWS instance type CPUs (cores) and Memory

Small 1 CPU 1.7Gb RAM

Extra large 4 CPUs 15Gb
Later in the course when we try to assemble genomes for example, we will require computers with
more memory and more cores

You need to log into an instance by using the ssh command in the Terminal window. 'ssh' stands for
secure shell. This is an encrypted connection to another computer. You'll learn more about the 'shell'
part in the next section.

Here's how you log in to an instance.

ssh srobb@ec2-107-22-31-168.compute1.amazonaws.com

This is confusing, so we made you an easier way to log in. There is a webpage with everyone's user
name and a link. The webpage is here.
http://ec2-54-205-98-165.compute-1.amazonaws.com/files/awslogins.html
The links act as an ssh command, so if you click on the link, you will get logged in to your instance.

This might take a little getting used to, because you are really just using the iMac as a Terminal
(hence the name of the Application) into a server somewhere else. In our case, this is an AWS virtual
computer in the cloud. This is a very common way to work with UNIX. In a day or so, you will be used
to it.

OK. I've Logged in. What Now?
The terminal window is running a shell called "bash." The shell is a loop that:

1. Prints a prompt
2. Reads a line of input from the keyboard
3. Parses the line into one or more commands
4. Executes the commands (which usually print some output to the terminal)
5. Go back 1.

There are many different shells with bizarre names like bash, sh, csh, tcsh, ksh, and zsh. The "sh"
part means shell. Each shell was designed for the purpose of confusing you and tripping you up. We
have set up your accounts to use bash. Stay with bash and you'll get used to it, eventually.

Command-Line Prompt
Most of bioinformatics is done with command-line software, so you should take some time to learn to
use the shell effectively.

This is a command line prompt:

http://ec2-54-205-98-165.compute-1.amazonaws.com/files/awslogins.html

bush202>

This is another:

(~) 51%

This is another:

srobb@bush202 1:12PM>

What you get depends on how the system administrator has customized your login. You can
customize yourself when you know how.

The prompt tells you the shell is ready to accept a command. When a long-running command is going,
the prompt will not reappear until the system is ready to deal with your next request.

Issuing Commands
Type in a command and press the <Enter> key. If the command has output, it will appear on the
screen. Example:

(~) 53% ls -F
GNUstep/ cool_elegans.movies.txt man/
INBOX docs/ mtv/
INBOX~ etc/ nsmail/
Mail@ games/ pcod/
News/ get_this_book.txt projects/
axhome/ jcod/ public_html/
bin/ lib/ src/
build/ linux/ tmp/
ccod/
(~) 54%

The command here is ls -F, which produces a listing of files and directories in the current directory
(more on which later). After its output, the command prompt appears agin.

Some programs will take a long time to run. After you issue their command name, you won't recover
the shell prompt until they're done. You can either launch a new shell (from Terminal's File menu), or
run the command in the background using the ampersand:

(~) 54% long_running_application&
(~) 55%

The command will now run in the background until it is finished. If it has any output, the output will be
printed to the terminal window. You may wish to redirect the output as described later.

Command Line Editing

Most shells offer command line entering. Up until the comment you press <Enter>, you can go back
over the command line and edit it using the keyboard. Here are the most useful keystrokes:

Backspace
Delete the previous character and back up one.

Left arrow, right arrow
Move the text insertion point (cursor) one character to the left or right.

control-a (^a)
Move the cursor to the beginning of the line. Mnemonic: A is first letter of alphabet

control-e (^e)
Move the cursor to the end of the line. Mnemonic: <E> for the End (^Z was already taken for
something else).

control-d (^d)
Delete the character currently under the cursor. D=Delete.

control-k (^k)
Delete the entire line from the cursor to the end. k=kill. The line isn't actually deleted, but put into
a temporary holding place called the "kill buffer".

control-y (^y)
Paste the contents of the kill buffer onto the command line starting at the cursor. y=yank.

Up arrow, down arrow
Move up and down in the command history. This lets you reissue previous commands, possibly
after modifying them.

There are also some useful shell commands you can issue:

history
Show all the commands that you have issued recently, nicely numbered.

!<number>
Reissue an old command, based on its number (which you can get from history)

!!
Reissue the immediate previous command.

!<partial command string>
Reissue the previous command that began with the indicated letters. For example !l would
reissue the ls -F command from the earlier example.

bash offers automatic command completion and spelling correction. If you type part of a command
and then the tab key, it will prompt you with all the possible completions of the command. For
example:

(~) 51% fd<tab>
(~) 51% fd
fd2ps fdesign fdformat fdlist fdmount fdmountd fdrawcmd fdumount
(~) 51%

If you hit tab after typing a command, but before pressing <Enter>, bash will prompt you with a list of
file names. This is because many commands operate on files.

Wildcards
You can use wildcards when referring to files. "*" refers to zero or more characters. "?" refers to any
single character. For example, to list all files with the extension ".txt", run ls with the pattern "*.txt":

(~) 56% ls -F *.txt
final_exam_questions.txt genomics_problem.txt
genebridge.txt mapping_run.txt

There are several more advanced types of wildcard patterns which you can read about in the tcsh
manual page. For example, you can refer to files beginning with the characters "f" or "g" and ending
with ".txt" this way:

(~) 57% ls -F [f-g]*.txt
final_exam_questions.txt genebridge.txt genomics_problem.txt

Home Sweet Home
When you first log in, you'll be placed in a part of the system that is your personal domain, called the
home directory. You are free to do with this area what you will: in particular you can create and delete
files and other directories. In general, you cannot create files elsewhere in the system.

Your home directory lives somewhere way down deep in the bowels of the system. On our iMacs, it is
a directory with the same name as your login name, located in /Users. The full directory path is
therefore /Users/username. Since this is a pain to write, the shell allows you to abbreviate it as
~username (where "username" is your user name), or simply as ~. The weird character (technically
called the "tilde" or "twiddle") is usually hidden at the upper left corner of your keyboard.

To see what is in your home directory, issue the command ls -F:

(~) % ls -F
INBOX Mail/ News/ nsmail/ public_html/

This shows one file "INBOX" and four directories ("Mail", "News") and so on. (The "-F" in the
command turns on fancy mode, which appends special characters to directory listings to tell you more
about what you're seeing. "/" means directory.)

In addition to the files and directories shown with ls -F, there may be one or more hidden files. These
are files and directories whose names start with a "." (technically called the "dot" character). To see
these hidden files, add an "a" to the options sent to the ls command:

(~) % ls -aF
./ .cshrc .login Mail/
../ .fetchhost .netscape/ News/
.Xauthority .fvwmrc .xinitrc* nsmail/
.Xdefaults .history .xsession@ public_html/
.bash_profile .less .xsession-errors
.bashrc .lessrc INBOX

Whoa! There's a lot of hidden stuff there. But don't go deleting dot files willy-nilly. Many of them are
esential configuration files for commands and other programs. For example, the .profile file contains
configuration information for the bash shell. You can peek into it and see all of bash's many options.
You can edit it (when you know what you're doing) in order to change things like the command prompt
and command search path.

Getting Around
You can move around from directory to directory using the cd command. Give the name of the
directory you want to move to, or give no name to move back to your home directory. Use the pwd
command to see where you are (or rely on the prompt, if configured):

(~/docs/grad_course/i) 56% cd
(~) 57% cd /
(/) 58% ls -F
bin/ dosc/ gmon.out mnt/ sbin/
boot/ etc/ home@ net/ tmp/
cdrom/ fastboot lib/ proc/ usr/
dev/ floppy/ lost+found/ root/ var/
(/) 59% cd ~/docs/
(~/docs) 60% pwd
/usr/home/lstein/docs
(~/docs) 62% cd ../projects/
(~/projects) 63% ls
Ace-browser/ bass.patch
Ace-perl/ cgi/
Foo/ cgi3/
Interface/ computertalk/
Net-Interface-0.02/ crypt-cbc.patch
Net-Interface-0.02.tar.gz fixer/
Pts/ fixer.tcsh
Pts.bak/ introspect.pl*
PubMed/ introspection.pm
SNPdb/ rhmap/
Tie-DBI/ sbox/
ace/ sbox-1.00/
atir/ sbox-1.00.tgz
bass-1.30a/ zhmapper.tar.gz
bass-1.30a.tar.gz
(~/projects) 64%

Each directory contains two special hidden directories named "." and "..". "." refers always to the
directory in which it is located. ".." refers always to the parent of the directory. This lets you move
upward in the directory hierarchy like this:

(~/docs) 64% cd ..

and to do arbitrarily weird things like this:

(~/docs) 65% cd ../../docs

The latter command moves upward to levels, and then into a directory named "docs".

If you get lost, the pwd command prints out the full path to the current directory:

(~) 56% pwd
/Users/lstein

Essential Unix Commands
With the exception of a few commands that are built directly into the shell, all Unix commands are
standalone executable programs. When you type the name of a command, the shell will search
through all the directories listed in the PATH environment variable for an executable of the same
name. If found, the shell will execute the command. Otherwise, it will give a "command not found"
error.

Most commands live in /bin, /usr/bin, or /usr/local/bin.

Getting Information About Commands
The man command will give a brief synopsis of the command:

(~) 76% man wc
Formatting page, please wait...
WC(1) WC(1)

NAME
 wc - print the number of bytes, words, and lines in files

SYNOPSIS
 wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help]
 [--version] [file...]

DESCRIPTION
 This manual page documents the GNU version of wc. wc
 counts the number of bytes, whitespace-separated words,
...

Finding Out What Commands are on Your Computer
The apropos command will search for commands matching a keyword or phrase:

(~) 100% apropos column
showtable (1) - Show data in nicely formatted columns
colrm (1) - remove columns from a file
column (1) - columnate lists
fix132x43 (1) - fix problems with certain (132 column) graphics
modes

Arguments and Command Switches
Many commands take arguments. Arguments are often (but not inevitably) the names of one or more
files to operate on. Most commands also take command-line "switches" or "options" which fine-tune
what the command does. Some commands recognize "short switches" that consist of a single
character, while others recognize "long switches" consisting of whole words.

The wc (word count) program is an example of a command that recognizes both long and short
options. You can pass it the -c, -w and/or -l options to count the characters, words and lines in a text
file, respectively. Or you can use the longer but more readable, --chars, --words or --lines options.
Both these examples count the number of characters and lines in the text file /var/log/messages:

(~) 102% wc -c -l /var/log/messages
 23 941 /var/log/messages
(~) 103% wc --chars --lines /var/log/messages
 23 941 /var/log/messages

You can cluster short switches by concatenating them together, as shown in this example:

(~) 104% wc -cl /var/log/messages
 23 941 /var/log/messages

Many commands will give a brief usage summary when you call them with the -h or --help switch.

Spaces and Funny Characters

The shell uses whitespace (spaces, tabs and other nonprinting characters) to separate arguments. If
you want to embed whitespace in an argument, put single quotes around it. For example:

mail -s 'An important message' 'Bob Ghost <bob@ghost.org>'

This will send an e-mail to the fictitious person Bob Ghost. The -s switch takes an argument, which is
the subject line for the e-mail. Because the desired subject contains spaces, it has to have quotes
around it. Likewise, my e-mail address, which contains embedded spaces, must also be quoted in this
way.

Certain special non-printing characters have escape codes associated with them:

Escape Code Description
\n new line character

\t tab character

\r carriage return character

\a bell character (ding! ding!)

\nnn the character whose ASCII code in octal is nnn

Useful Commands
Here are some commands that are used extremely frequently. Use man to learn more about them.
Some of these commands may be useful for solving the problem set ;-)

Manipulating Directories

ls
Directory listing. Most frequently used as ls -F (decorated listing) and ls -l (long listing).

mv

Rename or move a file or directory.
cp

Copy a file.
rm

Remove (delete) a file.
mkdir

Make a directory
rmdir

Remove a directory
ln

Create a symbolic or hard link.
chmod

Change the permissions of a file or directory.

Manipulating Files

cat
Concatenate program. Can be used to concatenate multiple files together into a single file, or,
much more frequently, to send the contents of a file to the terminal for viewing.

more
Scroll through a file page by page. Very useful when viewing large files. Works even with files
that are too big to be opened by a text editor.

less
A version of more with more features.

head
View the head (top) of a file. You can control how many lines to view.

tail
View the tail (bottom) of a file. You can control how many lines to view. You can also use tail to
view a growing file.

wc
Count words, lines and/or characters in one or more files.

tr
Substitute one character for another. Also useful for deleting characters.

sort
Sort the lines in a file alphabetically or numerically.

uniq
Remove duplicated lines in a file.

cut
Remove sections from each line of a file or files.

fold
Wrap each input line to fit in a specified width.

grep
Filter a file for lines matching a specified pattern. Can also be reversed to print out lines that
don't match the specified pattern.

gzip (gunzip)
Compress (uncompress) a file.

tar
Archive or unarchive an entire directory into a single file.

emacs
Run the Emacs text editor (good for experts).

Networking

ssh
A secure (encrypted) way to log into machines.

ping
See if a remote host is up.

ftp and the secure version sftp
Transfer files using the File Transfer Protocol.

who
See who else is logged in.

lp
Send a file or set of files to a printer.

Standard I/O and Command Redirection
Unix commands communicate via the command line interface. They can print information out to the
terminal for you to see, and accept input from the keyboard (that is, from you!)

Every Unix program starts out with three connections to the outside world. These connections are
called "streams" because they act like a stream of information (metaphorically speaking):

standard input
This is a communications stream initially attached to the keyboard. When the program reads
from standard input, it reads whatever text you type in.

standard output
This stream is initially attached to the command window. Anything the program prints to this
channel appears in your terminal window.

standard error
This stream is also initially attached to the command window. It is a separate channel intended
for printing error messages.

The word "initially" might lead you to think that standard input, output and error can somehow be
detached from their starting places and reattached somewhere else. And you'd be right. You can
attach one or more of these three streams to a file, a device, or even to another program. This sounds
esoteric, but it is actually very useful.

A Simple Example
The wc program counts lines, characters and words in data sent to its standard input. You can use it
interactively like this:

(~) 62% wc
Mary had a little lamb,
little lamb,
little lamb.

Mary had a little lamb,
whose fleece was white as snow.
^D

 6 20 107

In this example, I ran the wc program. It waited for me to type in a little poem. When I was done, I
typed the END-OF-FILE character, control-D (^D for short). wc then printed out three numbers
indicating the number of lines, words and characters in the input.

More often, you'll want to count the number of lines in a big file; say a file filled with DNA sequences.
You can do this by redirecting wc's standard input from a file. This uses the < metacharacter:

(~) 63% wc <big_file.fasta
 2943 2998 419272

If you wanted to record these counts for posterity, you could redirect standard output as well using the
> metacharacter:

(~) 64% wc <big_file.fasta >count.txt

Now if you cat the file count.txt, you'll see that the data has been recorded. cat works by taking its
standard input and copying it to standard output. We redirect standard input from the count.txt file, and
leave standard output at its default, attached to the terminal:

(~) 65% cat <count.txt
 2943 2998 419272

Redirection Meta-Characters
Here's the complete list of redirection commands for bash:
<filename Redirect standard input to file

>filename Redirect standard output to file

1>filename Redirect just standard output to file (same as above)

2>filename Redirect just standard error to file

>filename 2>&1 Redirect both stdout and stderr to file

These can be combined. For example, this command redirects standard input from the file named
/etc/passwd, writes its results into the file search.out, and writes its error messages (if any) into a file
named search.err. What does it do? It searches the password file for a user named "root" and returns
all lines that refer to that user.

(~) 66% grep root </etc/passwd >search.out 2>search.err

Filters, Filenames and Standard Input
Many Unix commands act as filters, taking data from a file or standard input, transforming the data,
and writing the results to standard output. Most filters are designed so that if they are called with one
or more filenames on the command line, they will use those files as input. Otherwise they will act on
standard input. For example, these two commands are equivalent:

(~) 66% grep 'gatttgc' <big_file.fasta
(~) 67% grep 'gatttgc' big_file.fasta

Both commands use the grep command to search for the string "gatttgc" in the file big_file.fasta. The
first one searches standard input, which happens to be redirected from the file. The second command
is explicitly given the name of the file on the command line.

Sometimes you want a filter to act on a series of files, one of which happens to be standard input.
Many filters let you use "-" on the command line as an alias for standard input. Example:

(~) 68% grep 'gatttgc' big_file.fasta bigger_file.fasta -

This example searches for "gatttgc" in three places. First it looks in big_file.fasta, then in
bigger_file.fasta, and lastly in standard input (which, since it isn't redirected, will come from the
keyboard).

Standard I/O and Pipes
The coolest thing about the Unix shell is its ability to chain commands together into pipelines. Here's
an example:

(~) 65% grep gatttgc big_file.fasta | wc -l
22

There are two commands here. grep searches a file or standard input for lines containing a particular
string. Lines which contain the string are printed to standard output. wc -l is the familiar word count
program, which counts words, lines and characters in a file or standard input. The -l command-line
option instructs wc to print out just the line count. The | character, which is known as the "pipe"
character, connects the two commands together so that the standard output of grep becomes the
standard input of wc.

What does this pipe do? It prints out the number of lines in which the string "gatttgc" appears in the file
big_file.fasta.

More Pipe Idioms
Pipes are very powerful. Here are some common command-line idioms.

Count the Number of Times a Pattern does NOT Appear in a File

The example at the top of this section showed you how to count the number of lines in which a
particular string pattern appears in a file. What if you want to count the number of lines in which a
pattern does not appear?

Simple. Reverse the test with the grep -v switch:

(~) 65% grep -v gatttgc big_file.fasta | wc -l
2921

Uniquify Lines in a File

If you have a long list of names in a text file, and you are concerned that there might be some
duplicates, this will weed out the duplicates:

(~) 66% sort long_file.txt | uniq > unique.out

This works by sorting all the lines alphabetically and piping the result to the uniq program, which
removes duplicate lines that occur together. The output is placed in a file named unique.out.

Concatenate Several Lists and Remove Duplicates

If you have several lists that might contain repeated entries among them, you can combine them into a
single unique list by cating them together, then uniquifying them as before:

(~) 67% cat file1 file2 file3 file4 | sort | uniq

Count Unique Lines in a File

If you just want to know how many unique lines there are in the file, add a wc to the end of the pipe:

(~) 68% sort long_file.txt | uniq | wc -l

Page Through a Really Long Directory Listing

Pipe the output of ls to the more program, which shows a page at a time. If you have it, the less
program is even better:

(~) 69% ls -l | more

Monitor a Rapidly Growing File for a Pattern

Pipe the output of tail -f (which monitors a growing file and prints out the new lines) to grep. For
example, this will monitor the /var/log/syslog file for the appearance of e-mails addressed to mzhang:

(~) 70% tail -f /var/log/syslog | grep mzhang

