
References and
multidimensional data

Simon Prochnik,
with input from Dave Messina, Lincoln Stein, Steve Rozen

1 perlIX_References2015.key - October 13, 2016

Why do we need references?

Sometimes you need a more complex data structure than a
scalar or a list.
What if you want to work with several related pieces of
information? How would you represent this data in perl?

Gene Sequence Organism Expression
HOXB2 ATCAGCAATATACAATTATAAAGG

CCTAAATTTAAAA mouse 45.33
HDAC1 GAGCGGAGCCGCGGGCGGGAG

GGCGGACGGAC human 8.91

2 perlIX_References2015.key - October 13, 2016

Working with related data

To represent the table of data below, you could imagine
working with 4 arrays (one for each column of data)
@gene, @seq, @organism, @expression
or perhaps 3 hashes (with a common key of the gene name)
%sequence, %organism, %expression

Gene Sequence Organism Expression
HOXB2 ATCAGCAATATACAATTATAAAGG

CCTAAATTTAAAA mouse 45.33
HDAC1 GAGCGGAGCCGCGGGCGGGAG

GGCGGACGGAC human 8.91

3 perlIX_References2015.key - October 13, 2016

Representing tables of data in perl
Perl lets you work with multidimensional arrays and hashes
very easily. You just string keys or indices together.
For data with named columns, hashes are the most natural way
to work
my %gene;
$gene{HOXB2}{sequence} = ‘ATCAGCAATATTT’;
$gene{HOXB2}{org} = ‘mouse’;
$gene{HOXB2}{expr} = 45.33;
$gene{HDAC1}{sequence} = ‘GAGCGGAGCCGGGC’;
$gene{HDAC1}{org} = ‘human’;
$gene{HDAC1}{expr} = 8.91;

Gene Sequence Organism Expression
HOXB2 ATCAGCAATATACAATTATAAAGG

CCTAAATTTAAAA mouse 45.33
HDAC1 GAGCGGAGCCGCGGGCGGGAG

GGCGGACGGAC human 8.91

4 perlIX_References2015.key - October 13, 2016

Two-dimensional arrays
You could also represent this table with a two-dimensional
array. The first index will be the row number, the second index
will be the column number (both starting with 0). It would look
like this
my @data;
$data[0][0] = ‘HOXB2’;
$data[0][1] = ‘ATCAGCAATATTT’;
$data[0][2] = ‘mouse’;
$data[0][3] = 45.33;
$data[1][0] = ‘HDAC1’;
$data[1][1] = ‘GAGCGGAGCCGCGG’;
$data[1][2] = ‘human’;
$data[1][3] = ‘8.91’;

Gene Sequence Organism Expression
HOXB2 ATCAGCAATATACAATTATAAAGG

CCTAAATTTAAAA mouse 45.33
HDAC1 GAGCGGAGCCGCGGGCGGGAG

GGCGGACGGAC human 8.91
5 perlIX_References2015.key - October 13, 2016

More complex data structures

You can use more dimensions
$data[0][3][45] = ‘human’;
$expression{human}{BRCA1}{liver} = 45.98;
and you can mix and match hashes and arrays
$assay{HDAC1}[0]{human}{liver}[3] = 62.95;

6 perlIX_References2015.key - October 13, 2016

How does perl store two-dimensional data?

You can only store one item of data in a scalar or an element
of a hash or an element of array. So to make a two-dimensional
array, perl stores a reference to an array in an element of the
first array.
The debugger can help you explore and understand this
 DB<100>$data[0][0] = 'HOXB2'

 DB<101> p $data[0][0]
HOXB2
 DB<102> p $data[0]
ARRAY(0x7fd02a245490)

 This is how perl displays a reference to an array

Gene Sequence Organism Expression
HOXB2 ATCAGCAATATACAATTATAAAGG

CCTAAATTTAAAA mouse 45.33
HDAC1 GAGCGGAGCCGCGGGCGGGAG

GGCGGACGGAC human 8.91
7 perlIX_References2015.key - October 13, 2016

What is a reference?

Well first, what is a variable?
A variable is a labeled memory address that holds a value.
The location's label is the name of the variable.

$x=1; really means 1

0x84048ec

SCALAR x:

hexadecimal
memory
location

@y = (1, ‘a’, 23);

really means

1 ‘a’ 23
0x82056b4

ARRAY y:

8 perlIX_References2015.key - October 13, 2016

A variable is a labeled memory address.
When we read the contents of the variable, we are reading
the contents of the memory address.

0x82056b4

ARRAY y: 1 ‘a’ 23

How is a reference different from a variable?

In contrast, a reference contains the memory address where
some data is stored; it does not contain the data itself.

9 perlIX_References2015.key - October 13, 2016

Creating references yourself

Because a reference is a scalar, it is useful to create a
reference to a more complicated data structure if you want
to pass it to a subroutine.
We can create a reference to named variable @y. We use a
backslash character ‘\’ to say ‘a reference to’ like this:
my $ref_to_y = \@y;

0x82056b4

y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

10 perlIX_References2015.key - October 13, 2016

What’s stored in a reference

If we print out $ref_to_y, we see the raw hexadecimal memory
address where the array @y is stored:

print $ref_to_y,"\n";
ARRAY(0x82056b4)

ref_to_y: 0x82056b4SCALAR

11 perlIX_References2015.key - October 13, 2016

Dereferencing = the opposite of making a reference

You can create references to scalars, arrays and hashes
create some references
my $scalar_ref = \$count;
my $array_ref = \@array;
my $hash_ref = \%hash;

To dereference a reference, place the appropriate symbol ($ for
scalar references, @ for array references, % for hash references)
in front of the reference.
This makes a new scalar, array or hash that is a copy of the one
the reference pointed to.

dereference your references:
my $count = ${$scalar_ref};
my @new_array = @{$array_ref};
my %new_hash = %{$hash_ref};

12 perlIX_References2015.key - October 13, 2016

A reference is a pointer to the data. It isn't a copy of the
data.
When you make a reference to a variable, you have only
created another way to get at the data.
There is still only one copy of the data.

my @y = (1,'a',23);
my $ref_to_y = \@y;
print join ' ',@{$ref_to_y};
1 a 23

push @{$ref_to_y},'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

13 perlIX_References2015.key - October 13, 2016

my @y = (1,'a',23);
my @z = @y; # copy @y into @z
push @y,’new1','new2'; # add to @y only

print join ' ',@y;
1 a 23 new1 new2

print join ' ',@z;
1 a 23

This is in contrast to assigning a variable to be equal to
another, which creates a new data structure in a new
memory location.

14 perlIX_References2015.key - October 13, 2016

If you have a reference to an array or a
hash, you can access any element.

my $value = $y[2];

$value = ${$ref_to_y}[2];

${$ref_to_y}[2] = 'new';
print join ' ',@y;
1 a new

directly access the 3rd
element in @y

dereference the
reference, then
access the 3rd
element in @y

change the value of the
3rd element in @y

15 perlIX_References2015.key - October 13, 2016

my %z = (‘dog’ => 'animal',
 ‘potato’ => 'vegetable',
 ‘quartz’ => 'mineral',
 ‘tomato’ => 'vegetable');

my $ref_to_z = \%z;

my $value = $z{‘dog’};

$value = ${$ref_to_z}{‘dog’};

${$ref_to_z}{‘tomato’} = 'fruit';
print join ' ', values %z;
animal vegetable mineral fruit

directly access the value
associated with the key
‘dog’ in the hash %z

dereference the reference,
then get the value
associated with the key
‘dog’ in the hash %z

change the value
associated with the key
‘tomato’ in the hash %z

16 perlIX_References2015.key - October 13, 2016

Anonymous Hashes and Arrays

You will not usually make references to existing variables. Instead you
will create anonymous hashes and arrays. These have a memory
location, but no symbol or name, i.e. you can't write @my_data. The
reference is the only way to address them.  

To create an anonymous array use the form:  
my $array_ref = [‘item1','item2'...];

 
To create an anonymous hash, use the form:  

my $hash_ref = {key1=>’value1',key2=>'value2',...};

17 perlIX_References2015.key - October 13, 2016

my $y_gene_families = ['DAZ', 'TSPY', 'RBMY', 'CDY1',
'CDY2'];

$y_gene_family_counts = { 'DAZ' => 4,
 'TSPY' => 20,
 'RBMY' => 10,
 'CDY2' => 2 };

my $third_item_of_arry = $y_gene_families->[2];
my $daz_count = $y_gene_family_counts->{DAZ};

$y_gene_families gets (i.e. is assigned) a reference to an array, and
$y_gene_family_counts gets a reference to a hash.

18 perlIX_References2015.key - October 13, 2016

Making a Hash of Hashes

The beauty of anonymous arrays and hashes is that you can nest them:

my %y_gene_data = (‘DAZ’ => {‘family_size’ => 4,
 ‘description’ => 'deleted in azoospermia' },
 ‘TSPY’ => {‘family_size’ => 20,
 ‘description’ => 'testis specific protein Y-linked'
},
 ‘RBMY’ => {‘family_size’ => 10,
 ‘description’ => 'RNA-binding motif Y'},
 ‘CDY2’ => {‘family_size’ => 2,
 ‘description’ => 'chromodomain protein, Y-linked' }
);

what is the size of the RBMY family?
my $size = $y_gene_data{‘RBMY’}{‘family_size’};

what is the description of TSPY?
my $desc = $y_gene_data{‘TSPY’}{‘description’};

19 perlIX_References2015.key - October 13, 2016

Making an Array of Arrays

my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);
print $spotarray[1][0];
0.113

my $cell_1_0 = $spotarray[1][0];
print $cell_1_0;
0.113

20 perlIX_References2015.key - October 13, 2016

Examining References

Inside a Perl script, the ref function tells you what kind
of value a reference points to:

<DB> print ref($y_gene_data), "\n";
HASH

<DB> print ref($spotarray), "\n";
ARRAY

<DB> $x = 1;
<DB> print ref($x), "\n";
(empty string)

21 perlIX_References2015.key - October 13, 2016

Examining complex data structures in the debugger

Inside the Perl debugger, the "x" command will print the
contents of a complex reference nicely formatted like so:

DB<3> x $y_gene_data
0 HASH(0x8404bb0)
 'CDY2' => HASH(0x8404b80)
 'description' => 'chromodomain protein, Y-linked'
 'family_size' => 2
 'DAZ' => HASH(0x84047fc)
 'description' => 'deleted in azoospermia'
 'family_size' => 4
 'RBMY' => HASH(0x8404b50)
 'description' => 'RNA-binding motif Y'
 'family_size' => 10
 'TSPY' => HASH(0x8404b20)
 'description' => 'testis specific protein Y-linked'
 'family_size' => 20

22 perlIX_References2015.key - October 13, 2016

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.

23 perlIX_References2015.key - October 13, 2016

#!/usr/bin/perl
use warnings;
use strict;

tabulate nucleotide counts, store into %sequences

my %seqs; # initialize hash

while (my $line = <>) { # shortcut , reads a line from a file
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of base pairs
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nucleotides and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

24 perlIX_References2015.key - October 13, 2016

The output will look something like this:

id a c g t
2L52.1 23 4 12 11
4R79.2 15 12 5 18
AC3.1 11 11 8 20
...

25 perlIX_References2015.key - October 13, 2016

#!/usr/bin/perl
use warnings;
use strict;

my @scores = (1,2,3,4);
my @students = qw(bob karen emily john);

you can’t use this next form. Why not?
#my $smartest_student=see_who_is_best(@scores,@students); #WRONG

my $smartest = see_who_is_best(\@scores,\@students);
print “$smartest\n”;

sub see_who_is_best {
 # this next line doesn’t work
 # my (@scores,@students) = @_; # WRONG!
 # you have to use this
 # can you see why?

my ($score_ref,$student_ref) = @_;
 my @scores = @{$score_ref};
 my @students = @{$student_ref};

some more code goes here
#
#

}

When do you really need references?
For passing complex data to subroutines

26 perlIX_References2015.key - October 13, 2016

