
Sequence Alignment
Note: in the experiments below, you will not necessarily be given an exact recipe for how to
proceed. You are encouraged to explore and find out what works and what doesn't. You're also
encouraged to ask other students and team up with them. You're further encouraged to ask
questions of the instructors! It's amazing how much better (efficient, robust, thoughtful) science
is when people collaborate and engage in dialog.

Part 0: Files
We are going to use proteomes of some classic genomes: C. elegans, D. melanogaster, and A.
thaliana. If you want to use your own favorite proteome, go ahead. Even better, do experiments
with several genomes.

I like to record what I'm doing in at the command line in a lab notebook of some kind. A plain
text file is ideal because plain text never goes out of date. Let's call this lab1_notebook.md for
now, but you might want to call this something more descriptive. The first thing to write in it is
the date, what versions of the files you downloaded, and where they came from.

When you write in your lab notebook, you should follow some kind of standard. I prefer doing
everything in markdown syntax. This document is written in markdown. Do everything in
markdown and if you want a pretty version of it, you can convert it easily.

Part 1: Local Alignment
The first program we are going to use for alignment is called water , which is named after the
Smith-Waterman algorithm. This comes from the EMBOSS suite of bioinformatics programs.
One of the first things you should do when using a new program is to skim the documentation.
Some bioinformatics programs will have man pages, but not all. water doesn't come with a
man page, but there is good documentation online at the EMBOSS site. Most bioinformatics

programs will have a usage statement that gives you some help with the program. To display
the usage statement, try the -h , -help , --help options or try using the program without
any arguments. The water program responds to the first three, but if you give it no arguments,
it will start prompting you for arguments (which can be useful or annoying depending on your
mindset).

As you gain more experience with bioinformatics tools, you will find a large variety of command
line syntaxes and usage statements. Why? Because most scientific programmers aren't

professional software developers. They don't always follow the rules and best practices of the
Unix community (if you're a budding bioinformatician and software developer, try to follow
standards rather than making things up on your own).

water -h

There are not may options. We need to provide two sequence files, penalties for gap opening
and extension, and an output file. The scoring matrix appears to BLOSUM62 by default but
others are available (see /usr/share/EMBOSS/data or /usr/local/share/EMBOSS/data).
Let's try the interactive mode.

water

The program now asks for the name of the input sequence file. You can't tab-complete this.
That's enough reason for me to NEVER USE THE INTERACTIVE MODE, but if you like it, go
ahead (but it's yucky).

So where are we going to get our sequence files from? Let's grab the first protein from the A.
thaliana, C. elegans, and D. melanogaster proteomes to begin. It doesn't really matter what
sequences you use as the point is just to get the program to run (the helloworld equivalent). You
can use head with a command line option for the number of lines and the > redirection
symbol for this task. Save these files as at1.fa , ce1.fa , and dm1.fa . You might want to
write a bit in your lab1_notebook.md file about how you did this. Clever/lazy people paste in
parts of your history .

Now let's try aligning the various files to each other.

water at1.fa ce1.fa -gapopen 10 -gapextend 5 -outfile at_ce.water

Read the output of this command with less . Note the score, percent identity, percent
similarity, and score. Is a score of 37 (or whatever) good? Hmm, that's a difficult question. What
exactly does "good" mean? Should a good score mean that two sequences are evolutionarily
related? That they have similar function? As a scientist, one of the first questions you should
ask yourself is how likely that alignment could have occurred at random. At least you can
answer that question with some degree of confidence...

Part 2: Random Expectation
In order to determine what the random background of sequence alignment looks like, we need
to make some random sequences. There are several ways to go about doing this.

Write a program that uses 5% probability for each amino acid

Write a program that uses realistic probabilities
Write a program that randomizes real sequences
Use EMBOSS shuffleseq or some other program

Make some random sequences and then align them a bunch of times with water . This will
give you an idea of what alignment score is expected at random. If you really want to explore
what random looks like, you'll have to perform this experiment thousands of times (or more). So
script the whole thing from sequence generation to histogram.

Generate random sequences of some length
Align sequences with some parameters
Get the maximum scores
Create a histogram of maximum scores

After performing some experiments, answer these questions to the best of your ability. You
might use your lab_notebook.md file for these thoughts.

Is the shape of the curve normal?
Do you expect it to be normal?
If not normal, how do you determine probability?
Do you expect all protein comparisons to have the same distribution?
What factors might change the distribution and how?
How might real sequences be different from random?

Part 3: Karlin-Altschul Stats
Karlin-Altschul statistics tells us that the expected number of alignments that exceed some
score depends on the score, lambda, the size of the sequences, and a few other parameters
(see lecture notes). K-A also forbids gaps and has some other restrictions. But is that all really
true? The way to find out is with some experimentation.

You might not have time to do all the experiments below. Try doing one of them to begin.
Hopefully other students have done the other experiments and you can compare.

1. Write a program to examine the effect of sequence lengths
2. Write a program to examine compositional effects
3. Write a program to examine gap penalties

In your lab_notebook.md file, explain the intent of the experiment, how you approached it,
what you found, and what that means.

Part 4: Alignment Significance

Your task is to determine the statistical significance of an alignment. The query sequence is
B0213.10, which can be found in the C. elegans proteome. Search this against all A. thaliana
and D. melanogaster proteins to find its homologs. Of course, you can use some other
sequence and some other proteome as you like.

Before you begin, it's a good idea to get an idea how long it will take to do the experiment. Will
your experiment take seconds, minutes, hours, days, or longer? Before attempting to do the
whole experiment, it pays to do a small fraction first. Don't begin until you can answer the
following questions?

How many amino acids can I align per second?
How many amino acids do I need to align to do this experiment?
How long would it take to compare two proteomes?

Set up the experiment any way you like. You will find the Unix time command handy. Address
the following questions in your lab_noteboook.md file.

What is the best match in each genome?
What protein is this?
What are the alignment properties (% identity, etc)
What is the expected score of your alignment at random?
How different is your best score from random?
How statistically significant is this score?
How biologically significant is this score?

Part 5: BLASTP
BLASTP is supposed to be a lot like Smith-Waterman, but better. Perform the same experiment
above, but with BLASTP. To get a usage statement for blastp , type its name on the command
line.

blastp

There is a bewildering number of options! And you'll have to format a database with xdformat
before you can use blastp . Here's how you format a protein database of the C. elegans
proteome (assuming its name is worm).

xdformat -p worm

This creates several new files with various extensions. These extra files are the BLAST
database. To search it with some other fasta file, the command line is very simple.

blastp worm other_file.fa

There are many ways to control blastp . But before we do that, let's redo the experiment in
Part 4.

How fast is blastp compared to water ?
Do you believe the statistics in the BLAST report?

Part 6: Orthologs
We previously aligned B0213.10 to the A. thaliana and D. melanogaster genomes. The best
match is often the ortholog but really, the best reciprocal match is a better definition of the
ortholog. That is, after finding the best match to the fly genome, one must take the fly protein
and search it against the worm proteome to determine if it finds B0213.10. If if it does, the
proteins are orthologous.

Let's do something ambitious. Let's find ALL the orthologous proteins between worm and fly (or
any two genomes). First thing, we had better estimate how long that will take. You can do that
by aligning a few sequences and timing it.

There are a lot of parameters that control the speed of BLAST. The most important of these are
the seeding parameters. The default blastp search uses W=3 T=11 . We can change the
seeding parameters quite a bit. We will set T=999 so that there is no neighborhood around
each word match. In other words, only exact matches will produce a seed. Let's vary the word
match from 1 to 6.

time blastp worm whatever T=999 W=1 > w1.blast

time blastp worm whatever T=999 W=2 > w2.blast

etc.

How much faster does blastp run at higher word sizes?
High speed reduces sensitivity. What is acceptable to you?

Time to set up the searches. Create BLAST databases for each proteome and then search one
against the other. Do these in separate terminals so they run at the same time (or you can
background them).

blastp worm fly mformat=2 hspmax=1 E=1e-15 W=5 warnings > wvf.blastp

blastp fly worm mformat=2 hspmax=1 E=1e-15 W=5 warnings > fvw.blastp

A few command line switches were added. mformat=2 made the output tabular. hspmax=1
made it so that only the best alignment was shown (there can be more than one unlike water).

warnings turns off some warning messages. E=1e-15 set the E-value to something that
should never occur by chance.

If the search is taking a while, skip down to Part 7 and start working on that.

Once the jobs are complete use less to examine the outputs of each (actually, you can do this
even before the jobs are complete). Columns 1, 2, and 3 contain the names of the proteins and
the E-value of the match. If it makes it easier, you can cut these, but you might want to look at
other columns of the file.

cut -f 1-3 wvf

Use the less search feature (forward slash key) to find proteins in one file that match proteins
in the other file. Find some putative orthologs. Answer the following questions.

What difficulties are there in finding orthologs?
Which BLAST parameters might you change if you did this again?
What additional information would you like to have?
What logic would you use to find orthologs automatically?

Part 7: Paralogs
In this part, we are going to look for the paralogs of a couple worm genes: T21B10.2a and
B0213.10. That is, we are going to search the these proteins against the C. elegans proteome
to look for sequences that arose by duplication within the same genome. A gene may have from
0 to many paralogs. A simple, but flawed way to determine which alignments represent paralogs
is to use an E-value cutoff. But it's a good place to start.

blastp worm T21B10.2a > T21B10.2a.blastp

blastp worm B0213.10 > B0213.10.blastp

Inspect the BLAST report with less . Do all the sequences look like they are highly related?
You may want to change the E-value cutoff to something higher or lower than 1e-10.

What parameters did you choose for the search?
How did you choose the parameters? What trade-offs were considered?
What other properties would be useful for finding paralogs?
How would you identify paralogs using BLAST?

